RadiusOfGyrationSq¶
- class cvpack.RadiusOfGyrationSq(group, pbc=False, weighByMass=False, name='radius_of_gyration_sq')[source]¶
The square of the radius of gyration of a group of \(n\) atoms:
\[r_g^2({\bf r}) = \frac{1}{n} \sum_{i=1}^n \left\| {\bf r}_i - {\bf r}_c({\bf r}) \right\|^2.\]where \({\bf r}_c({\bf r})\) is the geometric center of the group:
\[{\bf r}_c({\bf r}) = \frac{1}{n} \sum_{i=j}^n {\bf r}_j\]Optionally, the radius of gyration can be computed with respect to the center of mass of the group. In this case, the geometric center is replaced by:
\[{\bf r}_m({\bf r}) = \frac{1}{M} \sum_{i=1}^n m_i {\bf r}_i\]where \(M = \sum_{i=1}^n m_i\) is the total mass of the group.
Note
This collective variable is better parallelized than
RadiusOfGyration
and might be preferred overRadiusOfGyration
when the group of atoms is large.- Parameters:
group (Iterable[int]) – The indices of the atoms in the group.
pbc (bool) – Whether to use periodic boundary conditions.
weighByMass (bool) – Whether to use the center of mass of the group instead of its geometric center.
name (str) – The name of the collective variable.
Example
>>> import cvpack >>> import openmm >>> from openmmtools import testsystems >>> model = testsystems.AlanineDipeptideVacuum() >>> num_atoms = model.system.getNumParticles() >>> rgsq = cvpack.RadiusOfGyrationSq(list(range(num_atoms))) >>> rgsq.addToSystem(model.system) >>> platform = openmm.Platform.getPlatformByName('Reference') >>> integrator = openmm.VerletIntegrator(0) >>> context = openmm.Context(model.system, integrator, platform) >>> context.setPositions(model.positions) >>> print(rgsq.getValue(context)) 0.0871... nm**2
Methods
- addToSystem(system, setUnusedForceGroup=True)¶
Add this collective variable to an openmm.System.
- Parameters:
system (System) – The system to which this collective variable should be added
setUnusedForceGroup (bool) – If True, the force group of this collective variable will be set to the first available force group in the system
- getEffectiveMass(context, allowReinitialization=False)¶
Compute the effective mass of this collective variable at a given openmm.Context.
The effective mass of a collective variable \(q({\bf r})\) is defined as [1]:
\[m_\mathrm{eff}({\bf r}) = \left( \sum_{i=1}^N \frac{1}{m_i} \left\| \frac{dq}{d{\bf r}_i} \right\|^2 \right)^{-1}\]If this collective variable share the force group with other forces, then evaluating its effective mass requires reinitializing the openmm.Context twice at each call. This is inefficient and should be avoided. To allow this behavior, the
allowReinitialization
parameter must be set to True.Note
By adding this collective variable to the system using the
addToSystem()
method, the force group of this collective variable is set to an available force group in the system by default.- Parameters:
context (Context) – The context at which this collective variable’s effective mass should be evaluated.
allowReinitialization (bool) – If True, the context will be reinitialized if necessary.
- Returns:
The effective mass of this collective variable at the given context.
- Return type:
Quantity
Example
In this example, we compute the effective masses of the backbone dihedral angles and the radius of gyration of an alanine dipeptide molecule in water:
>>> import cvpack >>> import openmm >>> from openmmtools import testsystems >>> model = testsystems.AlanineDipeptideExplicit() >>> top = model.mdtraj_topology >>> backbone_atoms = top.select("name N C CA and resid 1 2") >>> phi = cvpack.Torsion(*backbone_atoms[0:4]) >>> psi = cvpack.Torsion(*backbone_atoms[1:5]) >>> radius_of_gyration = cvpack.RadiusOfGyration( ... top.select("not water") ... ) >>> for cv in [phi, psi, radius_of_gyration]: ... cv.addToSystem(model.system) >>> context = openmm.Context( ... model.system, openmm.VerletIntegrator(0) ... ) >>> context.setPositions(model.positions) >>> phi.getEffectiveMass(context) 0.05119... nm**2 Da/(rad**2) >>> psi.getEffectiveMass(context) 0.05186... nm**2 Da/(rad**2) >>> radius_of_gyration.getEffectiveMass(context) 30.946... Da
- getMassUnit()¶
Get the unit of measurement of the effective mass of this collective variable.
- Return type:
Unit
- getName()¶
Get the name of this collective variable.
- Return type:
str
- getPeriodicBounds()¶
Get the periodic bounds of this collective variable.
- Returns:
The periodic bounds of this collective variable or None if it is not periodic
- Return type:
Union[Quantity, None]
- getUnit()¶
Get the unit of measurement of this collective variable.
- Return type:
Unit
- getValue(context, allowReinitialization=False)¶
Evaluate this collective variable at a given openmm.Context.
If this collective variable share the force group with other forces, then its evaluation requires reinitializing the openmm.Context twice at each call. This is inefficient and should be avoided. To allow this behavior, the
allowReinitialization
parameter must be set to True.Note
By adding this collective variable to the system using the
addToSystem()
method, the force group of this collective variable is set to an available force group in the system by default.- Parameters:
context (Context) – The context at which this collective variable should be evaluated.
allowReinitialization (bool) – If True, the context will be reinitialized if necessary.
- Returns:
The value of this collective variable at the given context.
- Return type:
Quantity
Example
In this example, we compute the values of the backbone dihedral angles and the radius of gyration of an alanine dipeptide molecule in water:
>>> import cvpack >>> import openmm >>> from openmmtools import testsystems >>> model = testsystems.AlanineDipeptideExplicit() >>> top = model.mdtraj_topology >>> backbone_atoms = top.select("name N C CA and resid 1 2") >>> phi = cvpack.Torsion(*backbone_atoms[0:4]) >>> psi = cvpack.Torsion(*backbone_atoms[1:5]) >>> radius_of_gyration = cvpack.RadiusOfGyration( ... top.select("not water") ... ) >>> for cv in [phi, psi, radius_of_gyration]: ... cv.addToSystem(model.system) >>> context = openmm.Context( ... model.system, openmm.VerletIntegrator(0) ... ) >>> context.setPositions(model.positions) >>> phi.getValue(context) 3.1415... rad >>> psi.getValue(context) 3.1415... rad >>> radius_of_gyration.getValue(context) 0.29514... nm